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Abstract

Many engineering fields have recognized the need to analyze past mistakes and failures in the hope of learning from
them. In computer science this realization has resulted in the development of software testing techniques that attempt
to detect known problems from software systems and in improved compilers and development tools. However, there
exists a series of software failures where detailed analysis is rarely published, mainly for fear that the information
could be used against active systems. These software failures, commonly referred to ascomputer vulnerabilities,
have special properties that set them apart from traditional software failures. Detailed analysis of the factors that
contribute to the existence of these vulnerabilities is mostly limited to cryptic articles posted to hacker newsgroups
or web sites. There are a few notable exceptions, and this report attempts to add to these with a detailed analysis of
four common computer vulnerabilities. The analysis of each vulnerability attempts to identify its characteristics, the
[expected] policies violated by its exploitation, and contributes to the understanding of the steps that are needed for
the eradication of these vulnerabilities in future programs.

1 Introduction

Many engineering fields have recognized the need to analyze past mistakes and failures in the hope of learning from
them [FC97, LS92, Pet85, Per84, Dor96]. In computer science this realization, sometimes through the publications of
case-studies in software failure [End75, BP84, OW84, Mye76, Knu89], has resulted in the development of software
testing techniques that attempt to detect known problems from software systems [MFS90, MKL+95, Spa90, How76,
How78, JK80, Mye79, DMMP87, Lip79, Y+85, WC80, Tai89, ADHe89, Bei83, DM91] and in improved compilers
and development tools.

However, there exists a series of software failures where detailed analysis is rarely published, mainly for fear that
the information could be used against active systems. These software failures, commonly referred to ascomputer
vulnerabilities, have special properties that set them apart from traditional software failures. They allow an external
subject to trigger the failure and they normally result in violation of [expected] policies. Detailed analysis of the factors
that contribute to the existence of these vulnerabilities is mostly limited to cryptic articles posted to hacker newsgroups
or web sites.

There are a few notable exceptions [Lin75, Spa89a, Spa89b, Sto90, Kum95, DFW96, MF97, DW95], and this
report attempts to add to these with a detailed analysis of five common computer vulnerabilities. The analysis of each
vulnerability attempts to identify its characteristics, the [expected] policies violated by its exploitation, and contributes
to the understanding of the steps that are needed for the eradication of these vulnerabilities in future programs.

Where appropriate, we use the notation introduced in [KST98] for the formal specification of the expected policies
violated by the exploitation of vulnerabilities. This notation is part of a model that can be used to represent high-
level policies as mathematical expressions. The model takes a functional approach to the specification of policies that
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allows the stepwise refinement of policies, such that at higher levels we deal with abstractions and at lower levels with
details. It takes advantage of the natural hierarchical organization of computer systems, with systems being composed
of objects with attributes.

This policy specification model assumes that policies are a set of rules that define the acceptablevalueof a system,
as defined by its owners, as its state changes through time. The general idea is to represent policies as a function of
the value of the components at a particular level and defining the value of that component as an aggregation of the
value of its subcomponents. In this model we define a functionPolicy that takes as parameters the state of a system
before and after an atomic operation. The function will return a value oftrue or false depending on whether the
operation has violated policy because the value of the system changed from one state to the next. ThePolicy function
needs a helper function, called theSystem Valuefunction, that calculates the value of the system at a particular state,
and it calculates the value of that system by aggregating the value of its components. Further details and examples on
this notation can be found in [KST98].

2 Buffer Overflows

The so-calledbuffer overflowvulnerability is difficult to characterize and define. There are many variations, but
they essentially have one of the forms shown in figure 1. A program tries to copy some data from one object into
another, does not check that the destination object is large enough to contain the source object, and uses a routine such
assprintf to do the copying.

Line Form 1 Form 2 Form 3
1
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16
17

main(int ac,
char *av[]) {
p(av[1]);

}

void p(char *a){
char b[30];

strcpy(b,a);
}

main() {
p();

}

void p(){
char b[30];
char *p;

p = getenv("TERM"));
sprintf(b,"%s",p);

}

main() {
p();

}

void p(){
struct hostent *h;
sockaddr_in s;

h = gethostbyname(*host);
bzero(&s, sizeof s);
s.sin_family =

h->h_addrtype;
s.sin_port = 25;
bcopy(h->h_addr_list[0],

&s.sin_addr,
h->h_length); 1

}

a

aNormally h->h_length would be the same size ash->h_addr_list [0]. However, it is possible to create a (possibly fake)
DNS reply that will violate this assumption.

Figure 1. The so-called “buffer overflow” vulnerabilities.

However, not all program that share this characteristic are vulnerable. The programs shown in figure 2 all have
buffer overflows but are not vulnerable because either the function never returns—in which case the program never
has the opportunity to jump to the code inserted—or the program’s buffer is declared static—in which case the program
overruns the heap and not the stack.

Programs and programmers implicitly make assumptions about the environment where the code will execute. For
most architectures, programmers make the implicit assumption that the programming counter (PC) will execute the
code intended by the programmer, and not anything else. Figure 3 illustrates the ranges where the PC executes in
the cases of non-fragmented code segments, fragmented code segments, and fragmented code segments with dynamic
loading of code2.

The so-called “buffer overflow” vulnerabilities are instances of programs where the programming counter jumps
from an allowable executable region to a region in memory, normally the stack, where it executes some arbitrary code.

2This simplified model does not take into account the system area of memory and this can be incorporated by adding an additional set of segment
market to signal that it is OK for the PC to execute system memory.



Line Form 1 Form 2
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main(int ac,
char *av[]) {
p(av[1]);

}

void p(char *a){
char b[30];

strcpy(b,a);
exit(1);

}

main() {
p();

}

void p(){
static char b[30];
char *p;

p = getenv("TERM"));
sprintf(b,"%s",p);

}

Figure 2. Buffer overflows that are not considered vulnerabilities.
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Figure 3. Programs normally execute code from well defined
regions in memory, even if the memory is fragmented or the
program contains dynamic executable code.



Because there are instances of buffer overflows that cannot be characterized as vulnerabilities, the real issue behind
these vulnerabilities is not the buffer overflow but rather what happens when a user can cause the stack pointer to
change so that it points back at the stack.

The program shown below illustrates how a program that can provide an attacker an index into arbitrary stack
memory can be vulnerable to the same problem without overwriting the program’s local memory or altering anything
else than the return address in the stack and the portion of memory that will be used to store the code to be executed.
The program segment was extracted from a project for graduate operating system course and it’s function is to allow
the programmer to change the value of debugging flags without having to recompile the code.

main() {
int dbg1, dbg2, dbg3, dbg4;
int numiter,index, i, j;
FILE *fp;

/* Read from a file the values of the debugging variables
as a series of (position, value) pairs: (1,5) would set
dbg1 to 5 and (4,0) would clear the dbg4 flag. */

if((fp = fopen("conf","r"))!=NULL){
/* How many flags to change? */
fscanf(fp,"%d",&numiter);
printf("numiter = %d\n",numiter);
for(i=0;i<numiter;i++) {

fscanf(fp,"%d%d",&index,&j);
*(&dbg1-index+1) = j;

}
}

}

The expected policy violated by this example, and all of the “buffer-overflow” vulnerabilities we have seen to date,
is that the program’s PC should remain within a well definedallowablerange. A policy specification for this case can
now be generated with the model and notation presented in [KST98].

For simplicity, an atomic operation will be axiomatically defined as the execution of any instruction that causes the
program counter (PC) to change. Note that, however, an alternative definition could consider only those operations
that cause the program counter to jump or we could consider only those operations that cause a program to return from
a subroutine. Although less general, these definitions are just as effective and much more practical.

Our policy function, shown in equation 1, takes as arguments a system value function, an object value function, and
two sets of interest (before and after the execution of an instruction). The function returnstrue if the policy has not
been violated andfalse otherwise.

The policy we will specify requires that applications only execute instructions within the bounds defined. The set
of interest consists of programs, program counters, and boundaries:

Programs:
} Set of boundaries:b.
} Set of program counter locations:pc.

Boundary:
} Top of allowed segment:T .
} Bottom of allowed segment:B.

Program Counter:
} Location:l.

The value functions that can be used to implement the desired policy are shown in equations 2 and 3.
There are a class of vulnerabilities that result from buffer overflows that cannot be caught by the violation of the

policy specified in this document. We will show next an example of such a vulnerabilities—-at this point theoretical
because we have no evidence that it actually exist in released systems.

The program shown below declares all it’s variables to bestatic and hence cannot have a buffer overflow that
overwrite the stack. However, the execution path of the program can be changed to execute code that would not be
executed under normal circumstances:



Policy : System Value function�Object Value function�
set of interest� set of interest! boolean

fun Policy(Value; v; Ii; Ii+1) ::=
if Value(Ii; v) � Value(Ii+1; v) then

Policy := true;
else

Policy := false;
fi

nuf

(1)

Value: set of interest! integer
fun Value(S) ::=

Value:=
P

x2S
v (x; S � x) 8x 2 S;

nuf

(2)

main() {
/* Static variables. Can’t inject anything into the stack */
static char name[10], term[5], userID[10];

/* Do something that will determine the name and userID of the user */
strcpy(userID,"gollum");
strcpy(name,"peter");

/* The program needs to know the terminal type... so lets read
it from the environment variable */

/* OVERFLOW HAPPENS HERE! */
strcpy(term,getenv("TERM"));

/* Now that we know the terminal... */
if(strcmp(userID,"root")==0) {

/* Do something super restricted */
do_secret(term);

} else {
/* Print error message telling the user he does not have access */
print_error(term);

}
}

If the environment variable “TERM” is set to the value “vt100root” then the program will execute the function
do_secret regardless of the original value of the variableuserID . The program counter remains in the area
allowed by design but violates the semantic of the program specification.

We argue that, although this vulnerability is the result of a buffer overflow, it belongs to a different class of vulnera-
bilities because the attacker cannot inject arbitrary code that will be executed by the program. Rather, the attacker can
just cause existing code to be executed in a different order that specified in the program design.

2.1 Solaris_iob[] Buffer Overflow

A common fix or method for preventing traditional buffer overflows was declaringstatic buffers under the
assumption that the overflow could overwrite the static heap and hence would not allow exploiters to insert arbitrary
code into the stack after changing the return address of the function.

In some programs (verified in Solaris 2.5 only but thought to apply to other platforms), however, it is still possible
to inject and execute arbitrary code by overwriting a static buffer.

The exploitation of the vulnerability takes advantage of the fact that the_iob[] array, that contains information
about the standard input, output, and error file descriptors, can be replaced by overwriting static buffers. Any program
that uses eitherstdout or stderr to display informationafter a static buffer overflowcan overwrite arbitrary
memory with this information.

Consider the program shown below. It contains a static buffer that can be overflowed and, because the buffer is not
in the stack, only static data can be replaced. The symbol table for this program can be generated as shown in figure 4.



v : object of interest� set of object of interest! integer
fun v (o;S) ::=

v := 0;
if o is a programthen

8x 2 o:pc do
m := 0;
) Check to see if the PC is in a correct range(
8y 2 o:b do

m := 1 if x:l � y:B ^ x:l � y:T ;
od
) Violation if we did not find a valid range for the PC(
v := v � 1 if m = 0;

od
fi

nuf

(3)

#include <stdio.h>

main(int argc, char *argv[]) {
static char buffer[100];

strcpy(buffer, argv[1]);
fprintf(stderr,"Error: %s\n",buffer);
exit(0);

}

$ nm test | sort -n +2 +1
[Some infomration deleted]
[50] | 133100| 0|OBJT |GLOB |0 |11 |_GLOBAL_OFFSET_TABLE_
[54] | 133112| 0|OBJT |GLOB |0 |12 |_DYNAMIC
[59] | 133248| 0|OBJT |GLOB |0 |13
|_PROCEDURE_LINKAGE_TABLE_
[51] | 133296| 0|FUNC |GLOB |0 |UNDEF |atexit
[52] | 133308| 0|FUNC |GLOB |0 |UNDEF |exit
[56] | 133320| 0|FUNC |GLOB |0 |UNDEF |_exit
[60] | 133332| 0|FUNC |GLOB |0 |UNDEF |strcpy
[65] | 133344| 0|FUNC |GLOB |0 |UNDEF |fprintf
[30] | 133360| 0|OBJT |LOCL |0 |15 |__CTOR_LIST__
[34] | 133360| 0|OBJT |LOCL |0 |14 |force_to_data
[41] | 133360| 0|OBJT |LOCL |0 |14 |force_to_data
[44] | 133364| 0|OBJT |LOCL |0 |15 |__CTOR_END__
[31] | 133368| 0|OBJT |LOCL |0 |16 |__DTOR_LIST__
[43] | 133372| 0|OBJT |LOCL |0 |16 |__DTOR_END__
[37] | 133376| 100|OBJT |LOCL |0 |17 |buffer.2
[58] | 133376| 0|OBJT |GLOB |0 |16 |_edata
[47] | 133480| 4|OBJT |GLOB |0 |17 |_environ
[57] | 133480| 4|OBJT |WEAK |0 |17 |environ
[49] | 133488| 320|OBJT |WEAK |0 |17 |_iob
[55] | 133488| 320|OBJT |GLOB |0 |17 |__iob
[48] | 133808| 0|OBJT |GLOB |0 |17 |_end

Figure 4. Symbol table for the vulnerable program.

The buffer starts in memory location 133376 and the_iob[] array starts in memory location 133488. It is clearly
possible to overwrite the_iob[] array by overflowing the static character arraybuffer . It is just a matter of
overwriting these buffers with useful information. Each element of the_iob[] buffer is a structure that has the
following form:

typedef struct {
int _cnt; /* number of available characters in buffer */



unsigned char *_ptr; /* next character from/to here in buffer */
unsigned char *_base; /* the buffer */
unsigned char _flag; /* the state of the stream */
unsigned char _file; /* UNIX System file descriptor */

} FILE;

To overwrite the_iob[] array we will have to overwrite the environment pointer in memory location 133480.
As shown below, we can obtain the value of this pointer, which is the same for every run of the program, by using a
debugger. The exploit script can be tailored to insert this value into the appropriate location:

$ gdb test
(gdb) break main
Breakpoint 1 at 0x106f8: file test.c, line 6.
(gdb) run
Starting program: /tmp/test

Breakpoint 1, main (argc=1, argv=0xeffffaac) at test.c:6
6 strcpy(buffer, argv[1]);
(gdb) printf "0x%x\n",_environ[0]
0xeffffbc2

It should be clear now that the_iob[] array can be replaced with arbitrary values. The significance of this
is that all print routines that use standard output and standard error write to the memory location indicated by the
corresponding_iob[] array element. Hence, by overwriting these values, and providing that we can predict that the
program vulnerable will print an error message with text we can inject, we can overwrite arbitrary portions of memory
with arbitrary information. This can be used to insert executable code in static memory that can be executed by the
program.

Notice that the vulnerable program calls theexit system call after it prints a message that echoes the first argument
given. In many versions of UNIX, including Solaris 2.5, this routine is dynamically linked and hence its address must
be resolved at runtime. The symbol table for the vulnerable program (see figure 4 shows that the address ofexit is
undefined at compile time. In fact, the location of the exit system call is normally referenced as an offset of the symbol
_PROCEDURE_LINKAGE_TABLE_. As shown next, this offset can be obtained by using a debugger.

$ gdb test
(gdb) break exit
Breakpoint 1 at 0xef7747bc
(gdb) run
Starting program: /tmp/test
Breakpoint 1, 0xef7747bc in exit ()
(gdb) disassemble exit
Dump of assembler code for function exit:
0xef7747bc <exit>: call 0xef7915fc <_PROCEDURE_LINKAGE_TABLE_+7176>
0xef7747c0 <exit+4>: nop
0xef7747c4 <exit+8>: mov 1, %g1
0xef7747c8 <exit+12>: ta 8
End of assembler dump.

Hence an exploit script can overwrite this location in memory, that does not change from run to run, and when the
original program calls theexit system call the code injected would be executed instead.

Naive exploit scripts released in the Internet simply insert the assembly code to be executed in the space between
the symbol of theexit call and the beginning of the data section. Generally it is possible to insert sufficient assembly
code here to start a shell. However, since arbitrary locations of memory can be changed, it is possible to change the
code of the program itself.

3 IP Fragmentation

In this section, we describe and analyze two vulnerabilities in the Internetworking Protocol (IP). An interesting
characterstic of the first vulnerability is that it is inherent to the design of the protocol and not a particular imple-
mentation. In section 3.3, we examine a vulnerability that also involves IP fragmentation, calledteardrop. Although
both vulnerabilities involve IP fragmentation, our analysis reveals that the violated policies are different for the two of
them, and therefore, the two vulnerabilities are different from one another.



3.1 IP and IP Fragmentation

IP is the central protocol of the TCP/IP suite of protocols that the internet is based on [Pos81a]. IP provides
for unreliable, connectionless datagram oriented communication services. An IP datagram is constructed from a
Protocol Data Unit(PDU) orpacketfrom a higher layer protocol such as the Transmission Control Protocol (TCP),
by prepending aheaderto the packet [Pos81b]. The packet from the protocol at a higher layer is then thedataof the
IP datagram. The header contains control information, such as the length of the datagram. The reader is referred to
[Com95] for more details on IP and its role in the TCP/IP protocol suite.

An IP datagram has a maximum size of 64 kBytes. This is called theMaximum Transmission Unit(MTU) of IP.
Thus, a protocol at a higher layer in the TCP/IP protocol stack, that uses IP’s communication services, must ensure
that a packet of size at most 64 kBytes minus the length of the IP header is handed to the IP layer for transmission.
Similarly, the protocol at the layer below IP whose communication services are used by IP, also has an MTU, which
may be smaller than IP’s MTU. Therefore, before an IP datagram can be transferred to the protocol at the lower layer,
it may need to befragmented.

Some or all of these fragments arrive at the destination, perhaps out of order, where they arereassembled. Fragments
of an IP datagram are very similar in structure to the original datagram, that is, they consist of an IP header and data.
In fact, an IP datagram that is not fragmented is equivalent to the first (and only) fragment of itself. We refer the reader
to the [Pos81a] for more details on fragmentation and reassembly.

The following four fields of the IP header provide sufficient information to reassemble datagrams [Pos81a].

Identification : This field is the same for all the fragments of a single datagram. The identification field,
in conjunction with the source address, destination address and protocol number, is used to identify all the
fragments of a single datagram in the internet at any given time.

Length: The length field contains the length of each fragment.

Flags: One of the bits in the 3-bit flag is amore–fragmentsbit. If it is set for a particular fragment, then that
fragment is not the last fragment of a datagram. For the last fragment of a datagram, the more–fragments
bit is zero.

Fragment Offset: The fragment offset for a particular fragment indicates the position of the first byte of
the data it carries, in the data of the entire datagram. The fragment offset is in units of 8 bytes. Thus, the
data portion of any IP fragment must be at least 8 bytes in size.

3.2 A Description of the Vulnerability

The vulnerability we describe here is one considered in [ZRT95]3. The vulnerability is in the reassembly process
as described in [Pos81a].

It is possible that fragments overlap each other when they arrive at the destination. [Pos81a] states that a fragment
should overwrite portions of fragments that arrived earlier, that overlap it. If the data in a datagram is that of a protocol
that includes “sensitive” information for that protocol, it is possible for portions of such information to be carried in
two different, overlapping fragments. And the information may be different in each of the fragments. For instance,
TCP packets have a header that includes a field calledsyn, which, if set, indicates a request for a connection. It is
possible for an IP fragment to carry the portion of the TCP packet that corresponds to thesynbit as zero, and another
to carry this as one. If the latter arrives later, the packet passed to TCP by IP would correspond to a connection request.
If the former arrives later, it would not.

A vulnerability is exists because there is a need to make inferences about the data carried by an entire datagram
before it is reassembled at the destination’s IP layer. An instance of where this is needed is a packet filter, that attempts
to enforce access rules on communication traffic [ZRT95]. A packet filter, situated on a path between the source and
destination, might want to disallow TCP connection requests from going through. Packet filters that do not maintain
state across fragments of a datagram decide on the fate of a datagram (let through or drop) by imposing the access
rules on the fragment that carries an IP header with a fragment offset of zero, which is the first fragment of a datagram.
Fragments with a non-zero fragment offset are allowed to proceed to their respective destinations. Without a fragment
with an offset of zero, reassembly cannot be completed.

3[ZRT95] also discusses the problem of “tiny fragments”, which we do not consider in this paper



Thus, a packet filter configured to drop TCP connection requests would allow a fragment, that carries a TCP packet
with its synbit set to zero, and has an offset of zero, go through. It would also allow a fragment, that carries a TCP
packet with itssynbit set, but that has a non-zero offset, to go through. If the first fragment arrives earlier than the
second, the second would overwrite the first at the destination. Thus, the datagram, when fully assembled would
correspond to a TCP connection request.

While our interest is in analyzing this vulnerability and not in suggesting solutions, we discuss some of the proposed
solutions to gain more insight into the vulnerability. [Mog89] suggests a packet filter that maintains state across
fragments to solve the above problem. But, such a packet filter is unable to handle the case where the fragments with
a non-zero offset arrive before that with an offset of zero.

[ZRT95] proposes a packet filter that drops fragments that do not have an offset of zero, but have an offset that
coincides with “sensitive” portions of the data. For instance, a TCP header is 20 bytes long, of which the last 4 bytes
are the checksum and an urgent pointer, neither of which is deemed useful to a packet filter. The first 16 bytes of the
TCP header can only be split across fragments by having the fragment with an offset of zero only contain the first 8
bytes, the minimum size for a fragment. The fragment with an offset of 1 would carry the next 8 bytes. The packet
filter drops any fragment with an offset of 1, carrying TCP traffic.

[WS95] proposes a solution in which the reassembly routine gives data from lower offset fragments precedence in
the case of overlaps, immaterial of the order of arrival of the fragments. This solves the problem in the specific case
of applying access rules to TCP connection requests, for instance, but is not in keeping with the IP standard [Pos81a].
Also, it assumes that data carried by a lower offset fragment is the “correct” one.

3.2.1 An Analysis of the Vulnerability

Line Program 1 Program 2
1
2
3
4
5
6
7
8
9
10
11
12
13

main() {
int i, j;

i = j = 0;

*(&i - 1) = 1;

if(j != 0) {
/* Do sensitive stuff */

}
}

main() {
int i, j;

i = j = 0;

*(&i - 1) = 0;

if(j != 0) {
/* Do sensitive stuff */

}
}

Program 1 results in a security violation, while Program 2 does not.

Figure 5. Examples related to the IP Fragmentation problem.

We compare the problem with IP fragmentation described above to the program listed as program 1 in figure 5.
In program 1, the variablej is accidentally (or purposefully) overwritten such that it causes a security violation.
That the environment (which includes, for instance, the compiler) allows for such an indirect change inj represents
a vulnerability. In program 2 in figure 5, on the other hand, despite the existence of the vulnerability, no security
violation occurs.

At the time the violation occurs, it is not always possible to trace back to the variable that caused it. Also, at the
time the violation occurs, it is not possible to determine whether the content of the variable has been changed in an
unauthorized manner. But, in the case of IP fragmentation, the “sensitive” storage locations are knowna priori, before
the processes of fragmentation and reassembly take place.

The violated policy is:Data in overlapping portions of fragments must be identical to each other. Thus, in the case
of program 1 from figure 5, we require that any unauthorized changes toj be such that the value ofj before and after
the change be the same, that is, that the change have no effect.

An assumption made when IP fragments are constructed and sent is that data in the overlapping portions of frag-
ments are identical to each other, since the fragments belong to the same datagram. During reassembly, an exploitation



v : object of interest� set of objects of interest! integer
fun v (o;A) ::=

v := 0;
8�o 2 A do

if o:s � �o:s < o:s+ o:n then
) There is an overlap(
i := �o:s� o:s;
m := minf�o:n; o:n� ig;
) v is decreased if overlapping bytes are not identical(
v := v � 1 if (o:bi+1 6= �o:b1) _ : : : _ (o:bi+m 6= �o:bm) ;

elseif�o:s � o:s < �o:s+ �o:n then
) There is an overlap(
i := o:s� �o:s;
m := minfo:n; �o:n� ig;
) v is decreased if overlapping bytes are not identical(
v := v � 1 if (�o:bi+1 6= o:b1) _ : : : _ (�o:bi+m 6= o:bm) ;

fi
od

nuf

(4)

of the vulnerability is indicated by overlapping portions of fragments being different from one another. Thus, our set
of interest is all the data that needs to be written into storage locations.

Data:
} The number of bytes that need to be stored,n.
} The sequence ofn bytes that need to be stored,b1; b2; : : : ; bn.
} A locations, which is the starting location where the data is to be stored.

The policy function we adopt is the same as that in equation 1. We require that the functionPolicy be evaluated
after the execution of a list of instructions that constitutes an atomic operation. A list of instructions that contains a
write instruction of any of the data items of interest as the last instruction, forms an atomic operation.

The object value functionv and the system value functionV alue are given by equations 4 and 2 respectively. The
object value function lowers the value of an object (a piece of data) if a write operation is performed such that there is
an overlap between the locations occupied by two pieces of data, and the overlapping bytes are not identical. This is
turn lowers the system value function because the system value function simply performs an aggregation of the values
of all the objects. This results in the functionPolicy returningfalse indicating a policy violation.

The policy specification we have prescribed in the functionsPolicy, v andV alue can be incorporated into the
algorithm for reassembly of IP fragments to detect violations of the policy and reject such datagrams. In particular,
they can be used to augment the algorithm given in [Cla82] for reassembly.

3.3 TheteardropVulnerability in Linux

Teardropis a vulnerability in the IP fragment reassembly program in Linux [Arc97]. We describe the problem in
this section, and analyze it in section 3.3.2.

As we mentioned in a section 3.1 of this paper, IP fragmentation is used to meet the smaller MTU requirement of
the protocol running below IP. When fragments arrive at a destination, they need to be reassembled. The possibility of
fragments overlapping is a vulnerability in the design of IP, as discussed in section 3.

A vulnerability that appears to be related to the vulnerability discussed in section 3 was discovered in the Linux
operating system [Arc97]. The system would crash when reassembling certain overlapping fragments. Though su-
perficially this problem was characterized as an IP fragmentation problem in [Arc97], our analysis from the next
section shows that the policy violated by the exploitation of this vulnerability is quite different from the problem of
overlapping fragments that we discussed in a section 3.



3.3.1 A Description of the Problem

The program for reassembling IP fragments in Linux runs in a loop, copying payload from queued fragments into a
buffer. The C code is reproduced in figure 6.

In portion 1,qp is a linked list of fragments to be reassembled. Theif condition is used to check whether the length
claimed in the IP header for the fragment is greater than the length of the data received. This prevents copying of more
data than received in the fragment. Finally, the data and header for the fragment are copied into the buffer pointed to
by ptr and a variable that keeps track of the total length of the datagram,count , is updated, and processing proceeds
to the next fragment4.

A variableend is used to hold the address of the location (byte) immediately following the last byte in the frag-
ment. Thus,end is computed asend = offset + ntohs(iph->tot_len) - ihl; for each fragment as
reassembly takes place. To avoid problems caused by overlapping fragments, such as the one discussed in section 3, a
check is in place to detect a fragment that overlaps with a fragment already in the reassembly buffer. The code for this
is in portion 2 in figure 6.

The condition in theif statement checks whether the offset of the fragment currently being considered in the
reassembly procedure is within the previous fragment. If so, the program realigns the fragment so that its offset is the
location immediately following the previous fragment by updating theoffset variable. This is not in keeping with
the IP specification since the specification calls for a fragment overlapping with another to overwrite it [Pos81a].

The length of the fragment is updated as indicated in portion 3 of figure 6. Amemcpy() function call is then
issued to copy the data from the fragment into the reassembly buffer.

The problem with the program is that the variableend is not also adjusted whenoffset is adjusted in the case
of overlaps. Thus,fp->len in line 3 in portion 3 could be negative at the time thememcpy() call is issued with
fp->len as the number of bytes that need to be copied. The type for the parameter tomemcpy() , that denotes
the number of bytes to be copied, isunsigned int and therefore a negative integer denotes a very large number
of bytes that need to be copied, which results in a crash, since the locations referred to in thememcpy() call are
meaningless to the process performing the reassembly.

Line Portion 1 Portion 2 Portion 3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

fp = qp->fragments;

while(fp != NULL) {
if(count +fp->len >

skb->len) {
error_too_big;

}

memcpy((ptr +fp->offset),
fp->ptr, fp->len);

count += fp->len;

fp = fp->next;
}

if(prev != NULL &&
offset < prev->end)

{
i = prev->end - offset;
offset += i;
ptr += i;

}

fp->offset = offset;
fp->end = end;
fp->len = end - offset;

Figure 6. Portions from the reassembly program
in Linux

3.3.2 An Analysis of the Vulnerability

The problem with the code is thatend is not updated whenoffset is updated. This is not a problem unique
to IP fragmentation and reassembly. There are other instances of programs containing variables that have implicit
relationships with each other. But the programming environment or language does not necessarily provide the tools

4Note that reassembly has not yet taken place.



to express such dependencies within the program. Also, a programmer does not always attempt to express or enforce
such relationships in a program.

Line Portion 1 Portion 2 Portion 3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

struct llist {
struct llistElem *head;
int len;

};

struct llist lst;

lst.head = NULL;
lst.len = 0;

void Delete(llist l,
int numToDelete) ;

{
while(numToDelete > 0)
{

/* Delete an item from
the head and move
the head forward */

numToDelete--;
}

}

Print(llist l)
{

for(int i = l.len; i > 0;
i--) {

/* Print the i-th
element */

}
}

Figure 7. Example showing relationships between variables not
being enforced in the program

We provide another example of such a problem in figure 7. Portion 1 shows the definition of a data typellist
which is used to maintain linked lists. A variablelst is defined of that type and its fields are initialized.

The fieldhead , the head of the linked list, and the fieldlen , the number of elements in the linked list, are related.
But the programmer does not encode or enforce this relationship in the program. Thus, in portion 2, in the function that
carries out the deletion ofnumToDelete entries in the list, if thelen field is not adjusted as thehead is changed,
the program will crash when thePrint() function from portion 3 is invoked.

The violated policy is:Relationships between variables should be encoded and enforced within the program.Our
set of interest is the set of all programs. Within the programs, we are interested in all variables. For each variable, we
seek a list of other variables the variable is related to, and a function defining the relationship.

Program:
} Set of variables,s. Note that “variable” includes fields within compound data types such as structures in C and

arrays.

Variable:
} Set of tuples,t = (w1; : : : ; wn; f), wherew1; : : : ; wn are variables that the variable in question,v is related to,

andf is a function that enforces the relationship. Thus,f takes as arguments the value of each ofv; w1; : : : ; wn
and returns a boolean result indicating whether the relationship is satisfied or not.

The policy function we adopt is the same as that in equation 1. We require that the functionPolicy be evaluated for
a policy violation to be detected after the execution of a list of instructions that constitutes an atomic operation. In
particular, we require that the policy function be evaluated before any read operation of a variable in the program. The
system value function aggregates the values in all the objects in the system, that is, the function we adopt is the one
specified in equation 2. The object value functionv is given in equation 5. The object value function lowers the value
of an object if a pre–specified relationship with other objects is not satisfied by it after an atomic operation. This in
turn lowers the result returned by the system value function.

4 Conclusion

In this paper we presented a detailed analysis of four computer vulnerabilities that are representative of common
errors that could be prevented or fixed if appropriate emphasis would be placed on enforcing the policies assumed



v : object of interest� set of objects of interest! integer
fun v (o;A) ::=

v := 0;
8o 2 A do

if o is a programthen
8w 2 o:s do
) For all variables in the program(

8u 2 w:t whereu = (w1; : : : ; wn; f) do
v := v � 1 if f(w;w1; : : : ; wn) = false
) Value decreases if the relationship between the variables does not hold(

od
od

fi
od

nuf

(5)

by the developers. We have also shown that there is a large discrepancy between the assumptions programmers and
designers make with respect to the environmental characteristics of the systems where their software will execute and
the characteristics of the actual operational environment.
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